Exploiting Regularity Without Development
نویسنده
چکیده
A major challenge in evolutionary computation is to find the right level of abstraction of biological development to capture its essential properties without introducing unnecessary inefficiencies. In this paper, a novel abstraction of natural development, called Compositional Pattern Producing Networks (CPPNs), is proposed. Unlike most computational abstractions of natural development, CPPNs do not include a developmental phase, differentiating them from developmental encodings. Instead of development, CPPNs employ compositions of functions derived from gradient patterns present in developing natural organisms. In this paper, a variant of the NeuroEvolution of Augmenting Topologies (NEAT) method, called CPPN-NEAT, evolves increasingly complex CPPNs, producing patterns with strikingly natural characteristics.
منابع مشابه
Approximate Moments and Regularity of Efficientlyimplemented Orthogonal Wavelet
An eecient implementation of orthogonal wavelet transforms is obtained by approximating the rotation angles of the orthonormal rotations used in a lattice implementation of the lters. This approximation preserves the orthonor-mality of the transform exactly but leads to non{vanishing moments (except of the zeroth moment). The regularity of these wavelets is analysed by exploiting their nite sca...
متن کاملShanks Workshop on Mathematical Aspects of Fluid Dynamics
In this talk, I will describe the simplified version of Ericksen and Leslie that models the hydrodynamic flow of nematic liquid crystals, which is a governing equation for the macroscopic continuum description of evolution of the material under the influence of both fluid velocity field and the macroscopic average of the microscopic orientation of rod-like liquid crystal molecules. I will indic...
متن کاملThe regularity of history and its features in the Qur’an
The regularity of history, the nature of the law of history, the method of how dealing with the regularity of history under related verses of the Qur’an, and the category of the factor of the law of history, all fall in the domain of theoretical philosophizing about history in the light of Qur’anic approach. From among the features of the law of history in the light of the Qur’an mention can be...
متن کاملStrong Topological Regularity and Weak Regularity of Banach Algebras
In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...
متن کاملLower Bound Gradient Estimates for First-order Hamilton-jacobi Equations and Applications to the Regularity of Propagating Fronts
This paper is concerned with rst-order time-dependent Hamilton-Jacobi Equations. Exploiting some ideas of Barron and Jensen 9], we derive lower bound estimates for the gradient of a locally Lipschitz continuous viscosity solution u of equations with a convex Hamiltonian. Using these estimates in the context of the level-set approach to front propagation, we investigate the regularity properties...
متن کامل